
Journal of Informetrics 17 (2023) 101376 

Contents lists available at ScienceDirect 

Journal of Informetrics 

journal homepage: www.elsevier.com/locate/joi 

Deep representation learning of scientific paper reveals its 

potential scholarly impact 

Zhuoren Jiang, Tianqianjin Lin, Cui Huang 

∗ 

Department of Information Resources Management, School of Public Affairs, Zhejiang University, Hangzhou, 310058 PR China 

a r t i c l e i n f o 

Keywords: 

Scholarly impact 
Deep representation learning 
Topicality 
Originality 

a b s t r a c t 

Citation and citation-based metrics are traditionally used to quantify the scholarly impact of sci- 
entific papers. However, for documents without citation data, i.e., newly published papers, the 
citation-based metrics are not available. By leveraging deep representation techniques, we pro- 
pose a text-content based approach that may reveal the scholarly impact of papers without human 
domain-specific knowledge. Specifically, a large-scale Pre-Trained Model (PTM) with 110 million 
parameters is utilized to automatically encode the paper into the vector representation. Two indi- 
cators, 𝛕 (Topicality) and 𝛔 (Originality) , are then proposed based on the learned representations. 
These two indicators leverage the spatial relations of paper representations in the semantic space 
to capture the impact-related characteristics of a scientific paper. Extensive experiments have 
been conducted on a COVID-19 open research dataset with 1,056,660 papers. The experimental 
results demonstrate that the deep representation learning method can better capture the scientific 
content in the published literature; and the proposed indicators are positively and significantly 
associated with a paper’s potential scholarly impact. In the multivariate regression analysis for 
the potential impact of a paper, the coefficients of 𝜎 and 𝜏 are 5.4915 ( 𝑃 < 0 . 001 ) and 6.6879 
( 𝑃 < 0 . 001 ) for next 6 months prediction, 12.9964 ( 𝑃 < 0 . 001 ) and 13.8678 ( 𝑃 < 0 . 001 ) for next 
12 months prediction. The proposed framework may facilitate the study of how scholarly impact 
is generated, from a textual representation perspective. 

 

 

 

 

 

 

 

 

 

1. Introduction and motivation 

Estimating the scholarly impact of a scientific paper is an important and challenging problem for the academic com-
munity ( Cai et al., 2019 ). From a micro perspective, finding and reading high-impact articles is a fundamental skill for a
scholar ( Gerrish and Blei, 2010 ). From a macro viewpoint, scholarly impact evaluation plays a crucial role in science policy and
can be used in the evaluation of journals, scholars, and institutions ( Wang and Barabási, 2021 ). For example, the scholarly impact
is an important criterion in reward evaluation, funding allocation, promotion, and recruitment decisions ( Cai et al., 2019; Radicchi
et al., 2017; Svider et al., 2014 ). 

Scholarly impact is commonly referenced to how scholars judge the academic influence of research ( Aguinis et al., 2014 ). Tradi-
tionally, it is measured using the number of times (or a weighted variant of raw counts) that other scholars include a particular paper
in the references section of their published work ( Aguinis et al., 2014; 2012; Akella et al., 2021; Cai et al., 2019; Davis, 2008; Kaur
et al., 2013; Radicchi et al., 2017 ). The citation-based metrics are straightforward: if more people cite an article, then more people
would read it, and it is likely to have a greater impact on its research direction. 
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Although citation has already been proven effective as a scholarly impact indicator ( Aksnes, 2006; Cole and Cole, 1974; Rinia
et al., 1998 ), its practical use may be jeopardized by three major issues ( Gerrish and Blei, 2010; MacRoberts and MacRoberts,
2010 ). Non-Professional Documents , such as legal documents, news articles, or blog posts, contain information that may have an
impact on others, but they lack clear citations between their contents. OCR Failures . The historical scientific documents do contain
citations, but the citation recognition is built partially based on automatic optical character recognition (OCR) technology ( Cash and
Hatamian, 1987 ), certain references may be missed because of the technology failures. 1 Besides, the improper OCR pattern may lead
certain citations to incorrectly point to the wrong articles. Newly-published Paper . Citations are only generated after a period of
time after the paper is published ( Price, 1976 ). Therefore, there are no citation statistics for newly-published papers to measure their
scholarly impact ( Wang et al., 2013 ). 

Meanwhile, since all papers are written in languages, the majority of scientific knowledge is published in text form. This inspires
us to investigate the scholarly impact of a scientific paper from a textual perspective. As stated in previous studies ( MacRoberts and
MacRoberts, 2010 ), “To determine influences on the production of a scientific article, the content of the article must be studied. ” In re-
cent years, with the development of deep learning ( LeCun et al., 2015 ), various types of neural network models began to be
widely used to solve Natural Language Processing (NLP) problems ( Hirschberg and Manning, 2015 ). Especially, the large-scale 
pre-trained models (PTMs) have achieved great success and become a milestone in the research field ( Brown et al., 2020; Devlin
et al., 2019 ). In terms of language, the representation automatically learned by large-scale PTMs has been proven to capture the
implicit linguistic rules and common sense hidden in the text, such as lexical meaning, syntactic structure, semantic roles, and
even pragmatics ( Bommasani et al., 2021; Devlin et al., 2019; Floridi and Chiriatti, 2020; Radford et al., 2021 ). Methods based
on text representation learning have been shown to significantly improve the mining of latent semantic knowledge from scientific 
literature ( Tshitoyan et al., 2019 ). 

In this paper, we explore the following research questions: RQ1 : Does the latest natural language processing technique, i.e., large-
scale pre-trained model (PTM), really have a better capability for representing the content of papers? RQ2 : How to design indicators
to assess the scholarly impact of a paper based on its content representation? RQ3 : Are the proposed indicators really positively
associated with the future scholarly impact of the paper? 

To address RQ1 , we utilized a large-scale pre-trained deep model, SciBERT ( Beltagy et al., 2019 ), for paper representation learn-
ing. SciBERT is a BERT 

2 -based language model designed for performing scientific tasks. It contains 110 million parameters, and is
pre-trained on a large multi-domain scientific corpus containing 1.14 million papers and 3.1 billion tokens. It has been demonstrated
to make statistically significant improvements over BERT and achieve new state-of-the-art results on multiple scientific tasks. Addi- 
tionally, compared with static models, such as Word2vec ( Mikolov et al., 2013 ) and Glove ( Pennington et al., 2014 ), SciBERT, as a
dynamic representation models, can not only capture word semantics, but also learn the contextually relevant information, such as
word polysemy, syntactic structure, semantic roles and co-reference ( Qiu et al., 2020 ). This characteristic has greater advantages for
the representation of long texts ( Peters et al., 2018 ). In Section 5 , we validate the representation capability of SciBERT by comparing
it with other representation models in multiple tasks. 

Figure 1 shows an example of word representations using SciBERT and Glove. Each word is firstly encoded as a dense feature vector
automatically learned by representation models; then mapped to the 2-D space using the t-SNE ( Van der Maaten and Hinton, 2008 )
algorithm with the learned feature vector as input. SciBERT has a better capability to extract the semantic knowledge of scientific
texts and embody the spatial relationships in the representation space. For instance, for the words with similar semantic roles (e.g.,
italy and germany, nasal and mouth) or similar lexical meanings (e.g., resumption and recovery, immunoglobulin and antibody), the 
representations learned by SciBERT have closer proximity compared to Glove. 

To address RQ2 , based on the paper representation learned by SciBERT, we designed two indicators: 𝛕 (Topicality) and 𝛔
(Originality) , by leveraging the spatial relations of paper representations in the semantic space to model the specific character-
istics of a scientific paper. As proven in previous studies, these two characteristics can significantly affect a paper’s impact. For
instance, Mukherjee et al. (2017) suggested that focusing on the forefront research topics is one of the key factors for gaining
future impact. Foster et al. (2015) and Wang et al. (2017) indicated the novel ideas and approaches often lead to high-impact
results. In previous works, the novelty can be measured by examining whether a published paper uses combinations of refer-
enced journals for the first time ( Wang et al., 2017 ), detecting a published paper that consolidates existing paper clusters or
connects distant ones ( Chen et al., 2009; Foster et al., 2015 ). But these methods all require citation information for the candi-
date paper. In this paper, we assume the temporal spatial relations between candidate paper and high-impact papers in represen-
tation space 3 can be associated with the paper’s scholarly impact. In Section 3 , we provide a formal definition of the proposed
indicators. 

To address RQ3 , we analyzed and discussed the relationship between proposed indicators and paper impact through regression 
analysis, case studies, and simulation analysis on the COVID-19 Open Research Dataset (CORD-19). Section 6 provides detailed 
experimental results and analysis. 
1 Based on an investigation of the citation metadata quality ( Jiang et al., 2016 ) in the Association for Computing Machinery Digital Library, there 
are 18.50% of articles did not have reference metadata. 

2 BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language model for deep text representation learning. It has 
swept in text sentiment classification, machine reading comprehension, and other 11 natural language processing tasks ( Devlin et al., 2019 ). 

3 The temporal spatial relation is the distance or similarity relationship between a candidate paper and temporal high-impact papers in the 
representation space, see Section 3.2 for the detailed definition. 
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Fig. 1. The visualization of two-dimensional (2D) projection of SciBERT (A) and Glove (B) representations of 4851 noun words. The words are 
derived from the titles and abstracts of the papers in CORD-19 ( Wang et al., 2020a ). Each grey node is a word; several representative words are 
shown in red. The cut-out (A-1)-(B-1), (A-2)-(B-2), (A-3)-(B-3), and (A-4)-(B-4) show 4 typical word pairs in different representation spaces. The 
word with similar syntactic and semantic features have closer positions in SciBERT representations. The words with the top 25% of document 
frequency or with less than 500 document occurrences are removed for better visualization. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

The contribution of this paper is threefold: 

• By leveraging deep representation techniques, we propose a text-content based approach that can reveal the future scholarly 
impact of papers. 4 Different from traditional methods, this approach is content-based and does not require human domain-specific 
knowledge. 

• We designed two representation-based indicators to model the important paper characteristics that can be associated with the 
future scholarly impact. We employed multiple regression models to prove the important relationships between the proposed 
indicators and future impact (in next 6 months or in next 12 months). 

• The simulation experiment based on regression models reproduces the process of scholarly impact generation, which may enlighten 
and facilitate further research on how scholarly impact is generated. 

In the remainder of this paper, we (a) review relevant literature and methods, (b) introduce the adopted deep representation
model, the definition of indicators, and the overall framework, (c) describe the dataset for experiments, (d) provide the detailed
experimental results for representation model validations, (e) provide regression results, a case study, and the simulations based on
the learned regression models, for scholarly impact analysis, and (f) discuss the contributions and limitations of our work. 

2. Related work 

2.1. Scholarly impact estimation 

The scholarly impact of a paper is often quantified by citations and citation-based metrics ( Wang and Barabási, 2021 ). Numerous
studies consistently suggest that citations are positively correlated with assessments of scientific impact or academic recognition, 
such as awards, reputation ( Cole and Cole, 1974 ), colleague evaluations ( Cronin, 1996; Lawani and Bayer, 1983; Luukkonen, 1991;
Oppenheim and Renn, 1978; Rinia et al., 1998 ), and authors’ self-assessment of their scientific contributions ( Aksnes, 2006 ). 

Many studies focus on finding what factors can affect the impact of a paper ( Bollen et al., 2009; Kaur et al., 2013; Radicchi
et al., 2017 ). The pure citation-based features/indicators have been proven to have multiple limitations, such as lacking predictive
power ( Wang et al., 2013 ) and suffering the problem of missing historical metadata ( Jiang et al., 2016 ). Besides citation-based fea-
tures, various features have been explored ( Bai et al., 2019 ), e.g., author-based features (author rank and past influence of authors,
etc.) ( Singh et al., 2015 ), journal-based features (journal prestige and journal centrality) ( Bornmann et al., 2012 ), and paper-based
features (title length and the number of references, etc.) ( Haslam et al., 2008 ). But these features are usually sparse, and require
careful design with large amounts of supplementary data collection. Furthermore, the basic information of a paper, i.e., the content
4 The dataset and the source code: https://github.com/Lintianqianjin/Text2Impact . 
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of a paper, is not fully explored. Gerrish and Blei (2010) proposed a language-based approach by using dynamic topic model ( Blei and
Lafferty, 2006 ) to measuring paper’s scholarly impact. Although this method is a pure text-based approach, it is a retrospective method
that requires modeling the impact of a paper by computing the textual influence of a paper on subsequent papers. Therefore, the
predictive ability of this method would be weak. Wang et al. (2022) found the level of innovation can significantly affect scientific lit-
erature’s impact, and proposed a fine-grained text-based approach to measure the “innovation degree ” of method knowledge elements 
in scientific literature. This motivated us to explore the scholarly impact of a paper by modeling the impact-related characteristics of
the paper. 

2.2. Deep representation learning 

Neural models can automatically learn low-dimensional continuous vectors (distributed representation) from data as task-specific 
features ( Bengio et al., 2013 ), avoiding complex feature engineering ( Han et al., 2021 ), in contrast to previous non-neural models that
mostly depended on manually-crafted features and statistical techniques. In the NLP field, static word representation models ( Mikolov 
et al., 2013; Pennington et al., 2014 ), dynamic and contextualized representation models ( Peters et al., 2018 ), especially since 2018,
large-scale pre-trained language models (PTM), e.g., BERT ( Devlin et al., 2019 ), GPT-3 ( Brown et al., 2020 ), have made a series of
breakthroughs. 5 Bommasani et al. (2021) systematically explained the opportunities and risks behind large-scale pre-training models. 
PTMs can compensate for the shortcomings of insufficient annotated data for NLP and greatly enhance the performance of many NLP
tasks. On certain datasets, the performance of PTMs can reach or even surpass human levels ( Han et al., 2021 ). Among various
PTMs, SciBERT ( Beltagy et al., 2019 ) is specifically pre-trained and validated on a large-scale scientific paper dataset, and is shown
to have a satisfactory performance on scientific tasks. Tshitoyan et al. (2019) showed that the representation models can efficiently
encode materials science knowledge present in the published literature into information-dense word representations. The learned 
representations can benefit the material discovery. However, they only used the traditional static word representation technology 
which cannot learn and utilize context-related information. 

Different from most previous studies, in this paper, we propose a text-based approach to exploring the scholarly impact of scientific
papers without human domain-specific knowledge. By applying a large-scale pre-trained language model, i.e., SciBERT, we try to 
fully and effectively learn the rich semantic information from paper content and capture the important characteristics of a scientific
paper that may be associated with its future impact. The following sections will introduce our methodology in detail. 

3. Modeling the representation-based indicators for scholarly impact 

3.1. Deep representation model 

As aforementioned, in this paper, we use SciBERT ( Beltagy et al., 2019 ) for paper representation learning. SciBERT is a pre-trained
BERT-based language model for performing scientific tasks in the field of natural language processing. SciBERT is trained on papers
from the corpus of semanticscholar.org . Corpus size is 1.14 million papers, 3.1 billion tokens. The full text of the papers is used for
training. Similar as BERT-base model ( Devlin et al., 2019 ), SciBERT has 12 encoder layers stacked on top of each other, which has a
total of 12 attention heads and 110 million parameters. 

Each paper 𝑝 𝑖 is represented by an representation vector 𝜃𝑖 computed by the outputs of SciBERT: 

𝜃𝑖 = 

[
SciBERT 

(
t it le 𝑖 

)
, SciBERT 

(
abstract 𝑖 

)]
(1) 

where SciBERT ( ⋅) denotes the representation output from SciBERT, 6 [ ⋅, ⋅] is the vector concatenate operation. The paper represen- 
tation is concatenated by its title representation and abstract representation. The default output dimension of SciBERT is 768, so
the dimension of the final paper representation is 1536. We provide the experimental results on the validation of the representation
capability of SciBERT in Section 5 . 

3.2. Representation-based indicator 

Let us sketch the key idea. Imagine conducting a literature review, to decide whether to investigate and cite a candidate paper, a
scholar may need to examine this paper from two perspectives: (1) if this candidate paper is studying a timely important topic in the
field; (2) if this candidate paper is proposing a new topic or idea in the field. We summarize these two characteristics of the paper as
Topicality and Originality , respectively. There are already several empirical results that have demonstrated the association between 
these two characteristics and scholarly impact ( Fleming et al., 2007; Foster et al., 2015; Gates et al., 2019; Mukherjee et al., 2017;
Wang et al., 2017; Youn et al., 2015 ). 

In this paper, unlike the majority of previous research works, we utilize deep representation learning to model these two charac-
teristics by computing the temporal spatial-relationship between candidate papers and seed papers in the deep representation space. 
Formally, we define the following notations for the proposed indicators: 
5 The different characteristics of static and dynamic representations are reviewed in ( Wang et al., 2020b ). 
6 The representation is generated by an average pooling for the last layer output of each token, the source code can be found at: https://github. 

com/Lintianqianjin/Text2Impact . 
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• 𝜙𝑖,𝑡 : The impact of a candidate paper 𝑝 𝑖 at time 𝑡 . Given all the papers published before time 𝑡 , the number of citations to
𝑝 𝑖 is considered as the scholarly impact of 𝑝 𝑖 . Following the previous studies ( Bai et al., 2019; Cronin, 1996; Mukherjee et al.,
2017; Sarigöl et al., 2014 ), we also assume that the scholarly impact of a paper can be reflected by the number of citations to
it ( Wang and Barabási, 2021 ). 

• 𝑃 ⋆ 
𝑡 

= { 𝑝 ⋆ 1 , ⋯ , 𝑝 ⋆ 
𝑗 
, ⋯ } : The seed paper set at time 𝑡 . Top 1% of all the papers (with 𝜙𝑖, ̃𝑡 > 1 ) sorted according to 𝜙𝑖, ̃𝑡 (the number

of citations from the papers published at time t ). The seed papers are considered as high-impact papers (most cited papers) at
time 𝑡 . 

• 𝜏𝑖,𝑡 : The topicality of a paper 𝑝 𝑖 at time 𝑡 . A candidate paper 𝑝 𝑖 has a higher 𝜏𝑖,𝑡 when the average similarity between 𝑝 𝑖 and
each seed paper 𝑝 ⋆ 

𝑗 
∈ 𝑃 ⋆ 

𝑡 
is greater. High topicality ( 𝜏) means that the representation of candidate paper has a high similarity to

representations of the high-impact research works (seed papers) in the field. 

𝜏𝑖,𝑡 = 

∑
𝑝 ⋆ 
𝑗 
∈𝑃 ⋆ 

𝑡 
𝑓 ( 𝑝 𝑖 , 𝑝 ⋆ 𝑗 ) 

||𝑃 ⋆ 𝑡 
|| (2) 

where 𝑓 ( ⋅, ⋅) is the cosine similarity ( Xia et al., 2015 ) between two paper representations: 

𝑓 
(
𝑝 𝑖 , 𝑝 𝑗 

)
= 𝑆 cosi ne 

(
𝜃
(
𝑝 𝑖 
)
, 𝜃
(
𝑝 𝑗 
))

= 

∑𝑛 

𝑘 =1 𝜃𝑘 
(
𝑝 𝑖 
)
𝜃𝑘 
(
𝑝 𝑗 
)

√ ∑𝑛 

𝑘 =1 
(
𝜃𝑘 
(
𝑝 𝑖 
))2 √ ∑𝑛 

𝑘 =1 
(
𝜃𝑘 
(
𝑝 𝑗 
))2 (3) 

where 𝜃( ⋅) is the representation function, 𝜃𝑘 ( ⋅) indicates the 𝑘 𝑡ℎ dimension of the representation. 
• 𝜎𝑖,𝑡 : The originality of a candidate paper 𝑝 𝑖 at time 𝑡 . A paper 𝑝 𝑖 may have a higher originality 𝜎𝑖,𝑡 when the minimum distance

of 𝑝 𝑖 from all seed papers 𝑝 ⋆ 
𝑗 
∈ 𝑃 ⋆ 

𝑡 
becomes larger. 7 High originality ( 𝜎) means that the spatial position of the candidate paper is

far away from the seed papers in the representation space. 

𝜎𝑖,𝑡 = Min 𝑝 ⋆ 
𝑗 
∈𝑃 ⋆ 

𝑡 
( 𝑔( 𝑝 𝑖 , 𝑝 𝑗 )) (4) 

where Min ( ⋅) is the function of taking the minimum value, 𝑔( ⋅, ⋅) is the cosine distance between two paper representations: 

𝑔 
(
𝑝 𝑖 , 𝑝 𝑗 

)
= 1 − 𝑆 cosi ne 

(
𝜃
(
𝑝 𝑖 
)
, 𝜃
(
𝑝 𝑗 
))

= 1 − 

∑𝑛 

𝑘 =1 𝜃𝑘 
(
𝑝 𝑖 
)
𝜃𝑘 
(
𝑝 𝑗 
)

√ ∑𝑛 

𝑘 =1 
(
𝜃𝑘 
(
𝑝 𝑖 
))2 √ ∑𝑛 

𝑘 =1 
(
𝜃𝑘 
(
𝑝 𝑗 
))2 (5) 

The calculation of these two indicators (1) is time-evolving, (2) is content-based, and (3) does not require additional human
domain knowledge. Please note that the proposed indicators cannot capture all the characteristics of papers that could be linked to
their future impact. 

3.3. Overall framework 

In summary, the whole framework of this paper is shown in Fig. 2 . By applying the SciBERT model on a large-scale scientific
corpus, we learn the paper representations in the target paper corpus. Based on the learned representations, we obtain two temporal
representation-based indicators, 𝜏 (topicality) and 𝜎 (originality), to capture two important characteristics of the candidate paper. 
The characteristic capture problem is then transformed into a spatial relation calculation problem in the representation space: these 
two indicators are based on the computing of the spatial relations between candidate papers and seed papers in the representation
space. Finally, we explore the relationship between these two indicators and the future scholarly impact of the papers. 

4. Dataset 

4.1. Data resource 

In this paper, the COVID-19 Open Research Dataset (CORD-19) ( Wang et al., 2020a ) is utilized to validate our hypotheses. CORD-
19 was first released on March 13, 2020, and has been continuously updated to date. 8 We use the version released on June 2, 2022,
which contains 1,056,660 papers. 

This dataset is chosen mainly for three reasons: 

• As a rare contingency in human society, the studies of the COVID-19 pandemic may have little historical information (such
as citations) that researchers can consult, particularly in the early stages of the outbreak. Our methodological assumptions are
consistent with this practical situation. 
7 Please note that, 𝜎 only models one possible scenario of originality. We should be aware that there are other possible scenarios for modeling the 
originality of a paper. 

8 Historical versions of CORD-19 can be downloaded from https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/ 
historical_releases.html . 
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Fig. 2. The overall framework of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• As a newly emerging research field, numerous new studies are produced every day, both in terms of quantity and diversity.
Therefore, our approach, which can automatically analyze the information from the paper content, is suitable for COVID-19 
research field. 

• This COVID-19 dataset contains studies from different domains, including biology, medicine, immunology, statistics, and social 
sciences, etc. This makes it useful for evaluating the generalizability and applicability of our proposed approach. 

4.2. Pre-processing 

Paper Selection. To obtain a high-quality data set for the experiment, we adopted a series of pre-processing operations. First, we
examined and removed 258,866 papers with duplicate titles. Second, we filtered and kept 234,768 papers with full text (the original
dataset does not contain citation information, so we have to extract the citation information from the references in full text). Third,
to obtain the papers exactly published after the COVID-19 pandemic outbreak, we further removed papers published before 2020. 9 

There are 199,057 papers retained. Fourth, in the COVID-19 pandemic, scientists had posted large numbers of non-peer-reviewed 
papers to preprint servers, e.g., bioRxiv or medRxiv. The quality of these papers cannot be guaranteed ( Kwon, 2020 ). To ensure
the paper’s quality in our experiment, we only kept papers that were published by Elsevier or indexed by Medline. Finally, 152,164
papers were retained in the experiment. 

Citation Expansion. To identify the scholarly impact of papers, based on the selected 152,164 papers, we expand the paper set
through citation networks. There were a total of 1,137,781 distinct papers identified through citation relations in the 152,164 papers,
260,832 of which had both title and abstract data in the CORD-19. Finally, the experimental paper dataset was composed of these
260,832 papers. 

5. Validating the representation model 

Before conducting experiments to explore the relationship between proposed representation-based indicators and scholarly impact, 
we need to validate the representation model for its capability of learning the semantic information from paper content. Specifically,
we compare our adopted representation model “SciBERT’ with two popular vector-space representation baseline models. The first 
baseline is a classical sparse text representation model “TF-IDF ” ( Aizawa, 2003 ), for which we assign a 21,642-d (vocabulary size,
min_df = 3) vector to each paper by calculating the token in paper’s title and abstract. In contrast to our method that compresses the
information in the paper content into a low-dimensional dense representation, the “TF-IDF ” model uses the vocabulary, and each paper
is represented by its word statistic pattern. The second baseline is a static word embedding model “Glove ” ( Pennington et al., 2014 ),
which is an unsupervised learning algorithm for obtaining vector representations of words. The training of “Glove ” is performed on
aggregated global word-word co-occurrence statistics from a corpus. 
9 The COVID-19 outbreak can be traced back to around the beginning of 2020 ( Li et al., 2020 ). 
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Fig. 3. Visualization (Heat map) of learned paper representations in (A) “British Journal of Surgery ” and (B) “Nature Communications ”. Each row 

is a representation model, each column is a dimension, and colors depict feature values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To ensure robustness of validation, we evaluate the employed dense and dynamic representation model against two baseline models 
in three tasks: (i) capturing the paper representation pattern in the journals, (ii) comparing the distributions of similarities of paper
pairs with/without citation relations, and (iii) predicting the belonging journals for papers. For each task, we provide both qualitative
visualization analysis and quantitative analysis with different metrics. 

5.1. Comparison of paper representation pattern in the journals 

Papers published in the same journal tend to have high similarities in terms of wording ( Åström, 2002; Milojevi ć, 2017 ) and
topical semantics ( D Souza and Smalheiser, 2014; Humphrey et al., 2006 ). Since representation model would encode the rich content
information of papers into the representation space, we assume that a good representation model should enable papers in the same
journal to have similar representation patterns and papers in different journals to have different representation patterns. We applied
three representation models to learn the representations for papers 10 from two different journals: “British Journal of Surgery ”11 and 
“Nature Communications ”12 . For a fair comparison, we used Singular Value Decomposition (SVD) ( Stewart, 1993 ) to decompose the
original representation and visualize the first 32 dimensions. 13 We used a heat map to visualize the paper representation. In this heat
map, each row is a representation model, each column is a dimension, and colors depict feature values. The color pattern can reflect
the representation pattern. As Fig. 3 shows, from the color similarity viewpoint, it is clear that the representations (color pattern) in
the same journal are similar. Compared with TF-IDF, the dense representation models (Glove and SciBERT) have significantly greater 
capability in capturing the consistent patterns for papers from the same journal (in many columns, the color consistency of TF-IDF
is worse than the dense models). To quantitatively compare the representation patterns, we calculated standard deviations for these 
32 dimensions under three representation models. 14 Generally, SciBERT has the smallest standard deviations in both journals. For 
instance, the averaged standard deviations of “British Journal of Surgery ” with TF-IDF, Glove, and SciBERT are 73.95, 24.97, and
20.71, while the standard deviations of the first dimension of “British Journal of Surgery ” with TF-IDF, Glove, and SciBERT are 114.63,
94.51, and 18.75. The averaged standard deviations of “Nature Communications ” with TF-IDF, Glove, and SciBERT are 82.51, 23.93,
and 23.16, while the standard deviations of the first dimension of “Nature Communications ” with TF-IDF, Glove, and SciBERT are
127.71, 48.68, and 18.45. Smaller standard deviations indicate higher consistency in the paper representation patterns of journals. 

Moreover, as shown in Table 1 , we conducted clustering performance evaluation based on paper representations of these two
journals. 15 Two clustering performance evaluation measures are reported: DaviesBouldin index ( Davies and Bouldin, 1979 ) and 
10 In our experimental dataset, there are 197 papers from “British Journal of Surgery ”, 420 papers from “Nature Communications ”. For a fair 
comparison, we randomly sampled 197 papers from “Nature Communications ”. 
11 https://bjssjournals.onlinelibrary.wiley.com/journal/13652168 . 
12 https://www.nature.com/ncomms/ . 
13 The first 32 dimensions are most informative dimensions; and 32 dimensions are also clear for visualization. 
14 The detailed standard deviations for the 32 dimensions under three representation models can be found at: https://github.com/Lintianqianjin/ 

Text2Impact . 
15 We evaluate the capability of the representation models by evaluating whether the papers can be clustered into the correct journals. If the 

representation model has a better capability for capturing the journal pattern, the representation learned by this model can better support the 
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Table 1 

The DaviesBouldin Index and Silhouette Coefficient for Paper Clustering Performance Evaluation on Paper Rep- 
resentations from “British Journal of Surgery ” and “Nature Communications ”. 

Method DaviesBouldin Index ↓ Silhouette Coefficient ↑ 

TF-IDF 7.55 0.003 
Glove 4.75 0.013 
SciBERT 4.41 0.033 

Bold font indicates the best results. ↑ indicates the greater the better, ↓ indicates the smaller the better. 

Table 2 

The Jensen-Shannon Divergence and Shannon Entropy of Similarity Distributions of Paper Pairs with/without 
Citation Relations. 

Method Divergence 
Entropy 

with Citation without Citation 

TF-IDF 0.2244 3.7837 2.8067 
Glove 0.0428 3.2731 3.3519 
SciBERT 0.1054 3.4402 3.4712 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silhouette coefficient ( Rousseeuw, 1987 ). SciBERT achieves the best clustering performance on both evaluation measures. These 
observations indicate SciBERT has the best capability for capturing the journal pattern among the three models. 

5.2. Distributions of distance/similarity of paper pairs with/without citation relations 

To further validate the learning capability of the representation model for scientific papers, we compared the distributions of
the distance/similarity of paper pairs with/without citation relations. We assumed that (1) the distance/similarity of paper pairs 
with citation relations and paper pairs without citation relations should be significantly different. (2) The representation similarity 
distribution of paper pairs without citation relations should be more random (with higher uncertainty) than paper pairs with citation
relations. These two qualities should be accurately reflected by a good representation model. 

There are 779,314 pairs of papers with citation relations in the experiment dataset. For comparison, we randomly sampled 779,314
paper pairs without citation relations. 16 Then we applied three representation models to learn the representations for the paper 
pairs. From the difference viewpoint, as shown in Fig. 4 , compared to Glove, the similarity/distance distribution pattern (shape
and position of red and blue areas) of SciBERT and TF-IDF show more significant differences. We further calculated the Jensen-
Shannon divergence ( Lin, 1991 ) to quantitatively compare the difference between distributions with/without citation relations. As 
shown in Table 2 , the divergences of SciBERT (0.1054) and TF-IDF (0.2244) are greater than Glove (0.0428). To explicitly compare
the uncertainty of different types of paper pairs, we calculated the Shannon entropy ( Shannon, 1948 ) of different types of paper
pairs under different representations. 17 As shown in Table 2 , with TF-IDF representation, the entropy of paper pairs without citation
relation (2.8067) is much smaller than the entropy of paper pairs with citation relation (3.7837). In contrast, with the Glove and
SciBERT representations, the entropy of paper pairs without citation relation is slightly greater than the entropy of paper pairs with
citation relation. A possible explanation is that since TF-IDF is a one-hot representation ( Turian et al., 2010 ), the similarity can only
be calculated if the papers use exactly the same words. For the papers that are semantically similar but use different words, the
similarity will be zero. This problem may reduce the performance of the TF-IDF representations. Overall, SciBERT performs better in
terms of both difference and uncertainty: the representation learned by SciBERT not only effectively distinguishes whether there are
citation relations between them, but also provides a superior semantic representation capability to represent papers. 

5.3. Predicting the belonging journal for papers 

Motivated by previous works ( Peng et al., 2021; Wang et al., 2016; Zhang et al., 2019 ), we conducted the journal paper visual-
ization and journal classification/clustering task to further validate the representational capability of the representation model. 

As shown in Fig. 5 , we visualized the paper representations from the three models. For better visualization, we randomly sampled
50 papers from each of the 12 journals. 18 In terms of node spatial position, the TF-IDF representation cannot distinguish different
journals, as paper nodes of different colors are mixed together. Meanwhile, SciBERT has a better distinguishing capability than Glove:
clustering algorithm to automatically assign the papers to the correct journals. All papers from “British Journal of Surgery ” (197) and “Nature 
Communications ” (420) are used for clustering evaluation. 
16 We examined the randomly sampled paper pairs and removed the self-citation pairs and the pairs with citation relations. Finally, we got 777,255 

paper pairs without citation relations. 
17 The source code of calculations of Jensen-Shannon divergence and Shannon entropy can be found at https://github.com/Lintianqianjin/ 

Text2Impact . 
18 We try to select journals in diverse fields, such as “Morbidity and Mortality Weekly Report ” (MMWR Morb Mortal Wkly Rep), “Foods ” (Foods), 

and “British Journal of Surgery ” (Br J Surg). Detailed visualized journal list can be found at: https://github.com/Lintianqianjin/Text2Impact . 
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Fig. 4. The visualization of the distributions of paper pairs with/without citation relations. Each column illustrates a representation model. The 
x-axis represents the Euclidean distance (the upper row) or cosine similarity (the lower row) of the paper pairs, and the y-axis represents the 
probability density. Blue area indicates pairs of papers with citation relations; red area indicates randomly selected papers pairs (without citation 
relations). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The visualization of papers from 12 journals. Each node is a paper, its color denotes the belonging journals. Each paper is firstly encoded 
as feature vectors learned by TF-IDF, Glove, and SciBERT; then mapped into the 2-D space using the t-SNE ( Van der Maaten and Hinton, 2008 ) 
algorithm with learned feature vector as input. For better visualization, we randomly sampled 50 papers from each of the 12 journals. 

 

 

 

 

 

 

 

 

 

 

the positions of nodes of the same color are more aggregated, and the distinction between the positions of nodes of different colors
is clearer. 

To quantitatively compare the representation models, we performed 49 sets of clustering performance evaluations based on paper 
representations of journals containing the most papers (from top 2 to top 50 journals) in the experimental dataset. 19 As shown in
Fig. 6 , in almost all settings, SciBERT consistently achieves optimal results on both evaluation metrics. These experimental results
show that SciBERT has the best journal differentiation capability and the best capability to represent paper content, among the three
models. 

Moreover, we conducted a classification task on predicting the belonging journals based on the different representation models. 
To comprehensively validate the predicting capability of representation models, we designed two experimental settings. (1) Balanced 

Classification , we selected 6 journals with different research areas for classification. As different journals contain different numbers
of papers, we randomly selected 197 papers 20 in each journal (totally 1182 papers). (2) Imbalanced Classification , we choose all the
papers from 10 journals containing the most papers (totally 20,897 papers) for classification. 21 Meanwhile, as this study is conducted 
on the COVID-19 Open Research Dataset, BioBERT ( Lee et al., 2020 ) trained specifically on biomedical dataset may achieve good
representation performance. For this task, we also included BioBERT for comparison. A random forest classifier ( Breiman, 2001 ) was
utilized for all representation models. 22 5-fold cross validation was applied for avoiding the data distribution bias. The results are
shown in Table 3 . By using the representation learned by SciBERT, the classification model achieved the best performance with both
19 The journal list can be found at: https://github.com/Lintianqianjin/Text2Impact . There are totally 42,154 papers used for evaluation. 
20 The 6 journals are “International Journal of Environmental Research and Public Health ” (Int J Environ Res Public Health), “Frontiers in Public 

Health ” (Front Public Health), “British Journal of Surgery ” (Br J Surg), “Frontiers in Immunology ” (Front Immunol), “International Journal of 
Molecular Sciences ” (Int J Mol Sci), and “Journal of Clinical Medicine ”(J Clin Med). “British Journal of Surgery ” contains the fewest number of 
papers (only 197); to ensure that each journal contains the same number of papers, we used all papers from “British Journal of Surgery ” and 
randomly sampled 197 papers from the other 5 journals. 
21 The number of papers contained in different journals varies greatly, for example, “International Journal of Environmental Research and Public 

Health ” has 5242 papers and “Journal of Clinical Medicine ” has only 1291 papers. 
22 The code can be found at: https://github.com/Lintianqianjin/Text2Impact . 
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Fig. 6. (A) The trends of DaviesBouldin index (the smaller the better) and (B) the trends of Silhouette coefficient (the greater the better) of clustering 
performance based on the paper representations of journals containing the most papers (from top 2 to top 50 journals). 

Table 3 

Classification Performance Based on Different Representation Models. 

Method 
Balanced Classification Imbalanced Classification 

Macro F1 Micro F1 Macro F1 Micro F1 

TF-IDF 0.6421 ( ± 0.0333) 0.6506 ( ± 0.0314) 0.4393 ( ± 0.0076) 0.5129 ( ± 0.0048) 
Glove 0.6592 ( ± 0.0317) 0.6632 ( ± 0.0320) 0.4491 ( ± 0.0031) 0.4978 ( ± 0.0075) 
BioBERT 0.6855 ( ± 0.0257) 0.6887 ( ± 0.0245) 0.4923 ( ± 0.0082) 0.5400 ( ± 0.0022) 

SciBERT 
0.6878 ( ± 0.0363) 0.6921 ( ± 0.0350) 0.4999 ( ± 0.0077) 0.5452 ( ± 0.0066) 
(7.1% ̂↑ , 3.9% ̄↑ ) (6.4% ̂↑ , 3.7% ̄↑ ) (13.8% ̂↑ , 8.6% ̄↑ ) (9.5% ̂↑ , 5.6% ̄↑ ) 

Format of result: Mean Value ( ± Standard Deviation). Bold font indicates the best results. ̂↑ indicates maximum improvement, ̄↑ indicates 
average improvement. 

 

 

 

 

 

 

 

evaluation metrics on both classification tasks. Please note that, the main purpose of this experiment is not to pursue the optimal
performance of journal classification, but to compare the content semantic learning capability of different representation models. For 
the same classification model, the performance difference based on the different representation models can demonstrate the capability 
differences in text representation learning. 

To conclude, by analyzing and validating representation models in three tasks, we demonstrate the advantages of SciBert over 
traditional representation models. 

6. The relationship between representation-based indicator and scholarly impact 

6.1. Regression analysis 

The linear regression analysis ( Montgomery et al., 2021 ) was performed to examine the relationship between proposed 
representation-based indicators and paper scholarly impact. The regression model would estimate the impact 𝜙𝑖,𝑡 

23 of a random 

paper 𝑝 𝑖 at time 𝑡 . Specifically, the linear models were used to model the dependence of the paper impact 𝜙 on features 𝜏 (topicality)
and 𝜎 (originality). 24 The learned relationships were linear and can be written as follows: 

𝑦 = 𝛽0 + 𝛽1 𝑥 1 + ⋯ + 𝛽𝑖 𝑥𝑖 (6) 

The predicted outcome of a paper instance was a weighted sum of its 𝑖 𝑡ℎ features. The 𝛽𝑗 represented the learned feature coefficients.
𝛽0 was the intercept. The 𝜏 and 𝜎 were treated as independent variables (features). In order to validate our proposed indicator as
thoroughly as possible, we chose two representative time windows: 6 months (representing the short to medium term), and 12 months
(representing the medium to long term). These settings of time windows have been frequently used in previous research ( Breitzman,
2021; Chakraborty et al., 2014; Croft and Sack, 2022; Eysenbach, 2006 ). Therefore, there were two types of dependent variable 𝜙
to be estimated. 𝜙𝑖, 6 , the impact of a candidate paper 𝑝 𝑖 in next 6 months, and 𝜙𝑖, 12 , the impact of a candidate paper 𝑝 𝑖 in next 12
23 In this paper, as defined in Section 3.2 , 𝜙𝑖,𝑡 is the citation count of 𝑝 𝑖 at time 𝑡 . 
24 To avoid possible statistical issues and make sure the indicators 𝜏 (topicality) and 𝜎 (originality) are not oppositely correlated, we calculated the 

rank correlation coefficient between the paper rankings based on these two indicators. The Spearman rank correlation coefficient is 0.29 ( 𝑝 < 0 . 001 ), 
Kendall rank correlation coefficient is 0.27 ( 𝑝 < 0 . 001 ). 𝜏 and 𝜎 show a very weak correlation. 
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Table 4 

Regression results for three models that estimate the paper scholarly impact in next 6 months. 

coef std err t P > |t | [0.025 0.975] 

const -0.4025 0.6440 -0.6250 0.5320 -1.6640 0.8590 
𝛔 3 . 2935 ∗∗∗ 0.8820 3.7350 0.0000 1.5650 5.0220 

coef std err t P > |t | [0.025 0.975] 

const 1.3314 0.1120 11.8840 0.0000 1.1120 1.5510 
𝛕 5 . 1629 ∗∗∗ 0.8090 6.3780 0.0000 3.5760 6.7500 

coef std err t P > |t | [0.025 0.975] 

const -2.8659 0.7140 -4.0160 0.0000 -4.2650 -1.4670 
𝛔 5 . 4915 ∗∗∗ 0.9220 5.9550 0.0000 3.6840 7.2990 
𝛕 6 . 6879 ∗∗∗ 0.8480 7.8890 0.0000 5.0260 8.3500 

Levels of statistical significance: 𝑃 < 0 . 05 ( ∗ ), 𝑃 < 0 . 01 ( ∗∗ ), 𝑃 < 0 . 001 ( ∗∗∗ ). 

Table 5 

Regression results for three models that estimate the paper scholarly impact in next 12 months. 

coef std err t P > |t | [0.025 0.975] 

const -2.9870 1.1950 -2.5000 0.0120 -5.3290 -0.6450 
𝛔 7 . 7893 ∗∗∗ 1.6710 4.6630 0.0000 4.5140 11.0640 

coef std err t P > |t | [0.025 0.975] 

const 1.0381 0.2090 4.9620 0.0000 0.6280 1.4480 
𝛕 10 . 6447 ∗∗∗ 1.3540 7.8600 0.0000 7.9900 13.3000 

coef std err t P > |t | [0.025 0.975] 

const -8.7008 1.3230 -6.5750 0.0000 -11.2950 -6.1070 
𝛔 12 . 9964 ∗∗∗ 1.7440 7.4520 0.0000 9.5780 16.4150 
𝛕 13 . 8678 ∗∗∗ 1.4170 9.7850 0.0000 11.0900 16.6460 

Levels of statistical significance: 𝑃 < 0 . 05 ( ∗ ), 𝑃 < 0 . 01 ( ∗∗ ), 𝑃 < 0 . 001 ( ∗∗∗ ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

months. There are 10,304 paper utilized for the prediction of next 6 months’ impact, and there are 7970 papers for the prediction of
next 12 months’ impact. The Ordinary Least Squares (OLS) method ( Hutcheson, 2011 ) was used to find the weights that minimize
the squared differences between the actual and the estimated outcomes. 25 

To ensure the robustness of regression analysis, we performed regression learning not only for each independent variable separately
(bivariate regression analysis), but also for both independent variables simultaneously (multivariate regression analysis). Therefore, 
there were totally 6 sets of regression modeling conducted. The regression coefficients, standard errors of estimation, absolute values
of the t-statistic, significance levels, and 95% confidence intervals of these regression models are reported in Tables 4 and 5 . 

The following observations can be made: 
(1) For the impact of a paper in 6 months after publication ( Table 4 ), both 𝜎 and 𝜏 are significantly positive for all the regression

models, i.e., for the bivariate regression analysis of 𝜎, the coefficient is 3.2935, 95% CI[1.5650,5.0220] ( 𝑃 < 0 . 001 ) ; for the bivariate
regression analysis of 𝜏, the coefficient is 5.1629, 95% CI[3.5760,6.7500] ( 𝑃 < 0 . 001 ); for the multivariate regression analysis, the
coefficient of 𝜎 is 5.4915, 95% CI[3.6840,7.2990] ( 𝑃 < 0 . 001 ), while the coefficient of 𝜏 is 6.6879, 95% CI[5.0260,8.3500] ( 𝑃 < 0 . 001 ).
Overall, in the short to medium term, a paper with high 𝜎 and 𝜏 would have potential to achieve high impact. Relatively, 𝜏 has a
greater effect on the impact of papers than 𝜎. 

(2) For the impact of a paper in 12 months after publication ( Table 5 ), both 𝜎 and 𝜏 are still significantly positive for all the
regression models, i.e., for the bivariate regression analysis of 𝜎, the coefficient is 7.7893, 95% CI[4.5140,11.0640] ( 𝑃 < 0 . 001 )
; for the bivariate regression analysis of 𝜏, the coefficient is 10.6447, 95% CI[7.9900,13.3000] ( 𝑃 < 0 . 001 ); for the multivariate
regression analysis, the coefficient of 𝜎 is 12.9964, 95% CI[9.5780,16.4150] ( 𝑃 < 0 . 001 ), while the coefficient of 𝜏 is 13.8678, 95%
CI[11.0900,16.6460] ( 𝑃 < 0 . 001 ). Overall, in the medium to long term, a paper with high 𝜎 and 𝜏 still has potential to achieve high
impact. 𝜏 has a relatively greater effect on the impact of papers than 𝜎; but compared with 6 months time-window, the difference in
the coefficients of 𝜏 and 𝜎 on the scholarly impact is smaller. 

6.2. Case study 

In Fig. 7 , we provide a representative case in the papers published in January and February. The red triangle indicates a seed
paper in February (Top 1% cited paper in February) which is entitled “A familial cluster of pneumonia associated with the 2019 novel

coronavirus indicating person-to-person transmission: a study of a family cluster ”. Two blue triangles indicate two high-impact papers in
March (Top 1% cited paper in March). Paper A entitled “Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia
25 We strictly control the citation time-window. For each paper, its impact is only obtained from papers published in the predicted time range. The 
code of regression analysis can be found at https://github.com/Lintianqianjin/Text2Impact . 
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Fig. 7. The visualization of two-dimensional (2D) projection of SciBERT representations of all papers published in January and February, 2020; 
t-SNE algorithm is used for dimensionality reduction. The blue nodes are papers published in January and the orange nodes are papers published in 
February. The red triangle indicates a seed paper in February (Top 1% cited paper in February). The blue triangles indicate two typical high-impact 
papers in March (Top 1% cited paper in March): paper A is close to seed paper (top 19.20% nearest in Euclidean distance ranking), and paper B is 
far from seed paper (top 13.47% furthest in Euclidean distance ranking). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Wuhan, China: a single-centered, retrospective, observational study ” is in the top 19.20% of papers nearest to seed paper. Generally,
both papers are case studies of COVID-19 patients, which was a popular research topic in early 2020 (the beginning of the COVID-
19 outbreak). Therefore, paper A had a high topicality with the seed paper. Correspondingly, the spatial distance between paper
A and seed paper is close in representation space, which is consistent with the hypothesis of the proposed indicator 𝜏 (topicality).
Meanwhile, paper B entitled “Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro ”

is in the top 13.47% of papers far from seed papers. Paper B studies a different topic with seed paper, which is focusing on antiviral
treatment. Therefore, paper B has a high originality compared to the seed paper. Correspondingly, the spatial distance between paper
B and seed paper is large in representation space, which is consistent with the hypothesis of the proposed indicator 𝜎 (originality).
In summary, this case demonstrates that the proposed indicators, 𝜏 and 𝜎, can capture the corresponding characteristics of the paper
by computing the spatial relationships between candidate paper and seed papers in the representation space. 

6.3. Simulation analysis 

Based on the learned multivariate regression models (for estimating the scholarly impact in next 6 months and next 12 months),
we simulated the potential impacts of papers in a two-dimensional representation space with different settings of the seed paper(s).
Specifically, first, the positions of seed papers were randomly generated in the representation space according to a uniform distribu-
tion. Second, for a spatial position of a candidate paper, its 𝜏 and 𝜎 can be calculated based on its spatial relations with seed paper(s)
via Eqs. (2) and (4) . Third, the learned regression model can predict the impact of the candidate paper based on its 𝜏 and 𝜎. As Fig. 8
shows, red triangles are seed papers, areas with deeper grey color indicate higher chance to be high-impact (get more citations). 

The following observations can be made: 
12 
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Fig. 8. Simulations based on the learned multivariate regression models. Sub-plot (a), (b), (c), and (d) show the simulation of the potential impact 
(the possible number of citations) of papers at different spatial positions in the representation space for the next 6 months, with one seed paper, 
two seed papers, three seed papers, and ten seed papers, respectively. Sub-plot (e), (f), (g), and (h) show the simulation of the potential impact of 
papers at different spatial positions in the representation space for the next 12 months, with one seed paper, two seed papers, three seed papers, and 
ten seed papers, respectively. The red triangles indicate the spatial positions of seed papers, the area with deeper color indicates that if a paper’s 
representation is located in this area, it has a higher chance of being high-impact.. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Simulations based on the multivariate regression models of the next 6 months and the next 12 months both show a similar pattern.
• The areas very close to the seed papers (around the red triangles) are almost white. This phenomenon suggests that a candidate

paper will have difficulty in achieving high impact if its representation is too similar to that of a seed paper. 
• For the case of only one seed paper, the darker a spatial position is, the further it is from the seed paper. According to this

observation, a candidate paper with higher 𝜎 (the representation of candidate papers is far away from that of seed paper) has a
better probability of achieving a high impact. 

• The cases of two seed papers and three seed papers are similar. If a spatial position is located between the seed papers or far from
the seed papers in the representation space, its color is darker. Therefore, if a candidate paper has a high similarity to all seed
papers (with high 𝜏), it has a greater chance of achieving high impact; if the distances between the candidate paper and seed
papers are all large (with high 𝜎), the candidate paper is possible to obtain a high impact in the future. 

• For the case of ten seed papers, if a spatial position is located in a narrow intermediate region surrounded by multiple seed papers,
its color is darker. Meanwhile, there are some narrow areas away from all the seed papers which are darker in color. This indicates
the papers that can cover multiple popular research topics could be possible high-impact papers; while original papers still have
a chance to obtain a high scholarly impact. 

We can explain the observed phenomenon from two perspectives: 

• From the perspective of knowledge creation : (1) new ideas often synthesize existing knowledge. For example, based on the analysis
of U.S. patents, new inventions are often made by recombining existing technologies ( Youn et al., 2015 ). Evidence obtained in a
wide range of surveys consistently suggests that uncommon combinations in scientific publications usually mean that the paper 
has a higher probability of achieving high impact ( Wang and Barabási, 2021 ). Thus, in the representation space, papers that
are located in the region between multiple seed papers may integrate multiple research ideas, thus can achieve high impact in
the future. (2) Proposing atypical research ideas that are completely different from the current research works, e.g., paradigm-
changing discoveries, is one of the ways to achieve high impact ( Wang et al., 2017 ). This explains why papers that are far from
all seed papers in the representation space always have a chance to be high-impact papers. 

• From the perspective of disciplinary development : (1) when the research field is in its early stages (only a few seed papers are
available), there is enormous room for becoming a high-impact paper in the future (the dark area is large). As the research field
continues to become mature, i.e., there are more and more seed papers, then there is less room for possible high-impact papers
(the dark area is getting smaller). (2) if we treat different seed papers as the core papers in different disciplines, these intermediate
areas surrounded by seed papers can be considered as the representation areas of interdisciplinary research, and these areas are
13 



Z. Jiang, T. Lin and C. Huang Journal of Informetrics 17 (2023) 101376 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

darker in color (higher chance to be high-impact). Therefore, interdisciplinary research ( Gates et al., 2019 ), by combining the
findings from different fields, has the potential to produce high-impact research works ( Larivière et al., 2015; Sinatra et al., 2015 ).

7. Conclusions and future works 

7.1. Conclusions 

Based on the deep textual representation of scientific papers, this paper proposes two indicators for revealing the future scholarly
impact of papers. We chose the COVID-19 Open Research Dataset for experimental validation and analysis. This dataset was chosen
to better validate the generalization and applicability of the proposed approach due to the substantial number of COVID-19-related 
papers and the diversity of research domains they cover. Besides, in the early stages of the COVID-19 outbreak, there may be lit-
tle historical information (such as citations) for scholars to consult. This practical situation is consistent with our methodological
assumptions. Through comprehensive experiments, we validate the effectiveness of the employed large-scale representation model. 
The regression experiment results indicate that the proposed indicators are positively and significantly associated with a paper’s 
future scholarly impact. The simulation analysis and the case studies further demonstrate the soundness of our proposed indicators. 

The findings from this study can be important for scientific bibliometrics and academic retrieval/recommendation. Although 
several citation-based features and indicators have been proposed in the past, few studies have addressed a pure text-based indicator.
This study achieved this by utilizing the state-of-the-art deep representation model (SciBERT). The comprehensive validation of 
SciBERT in this study can provide empirical evidence for its superior semantic representation capability and great potential in future
academic evaluation studies. For the future use of the proposed indicators, we suggest that: (1) they can be used directly to assist
academic evaluation. Since the proposed indicators only require the textual content of the paper, they are friendly to the newly
published papers without citation information. (2) They can be used as features for constructing complex academic evaluation or
prediction models. (3) Simulations can be done with these two indicators to further explore the formation mechanism of scholarly
impact. In order to help other scholars to reproduce the experiment outcome and use the proposed indicators for further research,
we release the code via https://github.com/Lintianqianjin/Text2Impact . Please note that, firstly, the representation-based indicators 
are not proposed to replace the current ones, but rather to provide a useful supplement and an interesting analytical perspective.
Secondly, although we use highly-cited papers as seed papers to calculate indicators, other methods can be used to define seed papers,
and different methods of defining seed papers may result in various indicator values for the same candidate paper. 

7.2. Limitations and future works 

This study has three potential limitations: (1) All citation information is generated from papers in the experimental dataset. If
the external citation information can be added, the quality of the dataset for experimental analysis can be further improved. (2) In
this study, we used one dataset for experimental analysis. Our results and analysis would be more robust if we could validate the
indicators on various datasets. (3) The proposed indicators cannot capture all impact-related characteristics of a paper. 

In the future, we will further optimize the indicator design to make them more compatible with the corresponding characteristics.
Meanwhile, to validate the universality of the proposed approach, we will investigate this problem by using more datasets. 
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